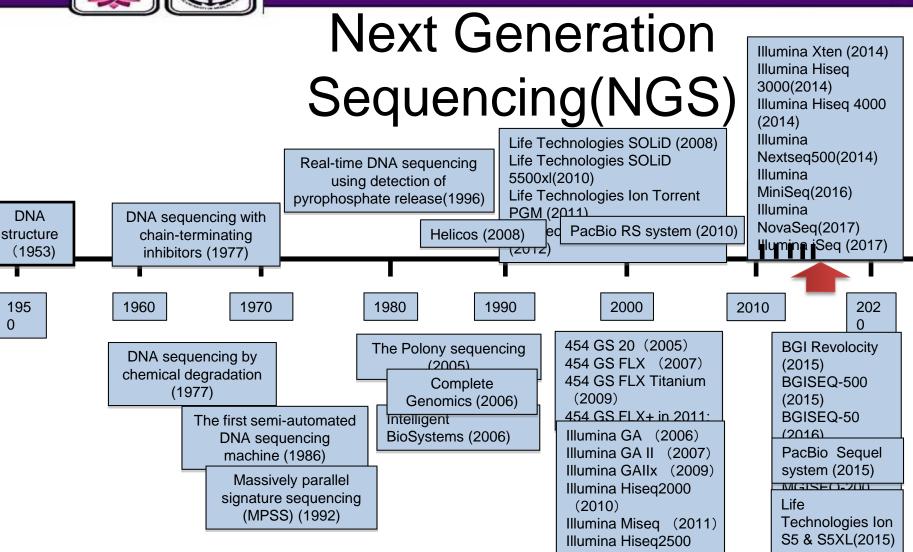


## Non Invasive Prenatal Testing (NIPT)

### Masoud Garshasbi, PhD

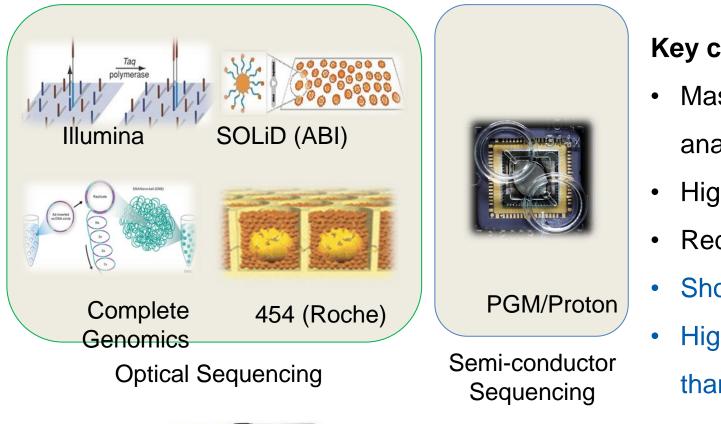

Associate Professor of Medical Genetics Tarbiat Modares University, Tehran, Iran

&

Genetics Dept., DeNA Lab, Tehran, Iran

Shiraz, Iran April, 2019






The past decade (2007-2017) has witnessed the quick development of sequencing technology as well as the fast transfer of this new technology from basic science research to practical clinical application *(from dream to reality)* 

Cost for one human genome dropped from \$3,000,000,000 (Human genome project) to



# Sequencing technologies



#### **Key characteristics:**

- Massively parallel analysis
- High throughput
- Reduced cost
- Short read length
- Higher error rate
   than 1<sup>st</sup> generation





# NIPT and NGS

• NIPT: noninvasive prenatal testing *(screen the high-risk* 

subgroup from general population)

- Invasive prenatal diagnosis
  - chorionic villus sampling
  - Amniocentesis
  - umbilical blood sampling
  - 0.5%-1% miscarriage risk



 NIPT refers to a wide scope of all prenatal cares in a noninvasive or minimal invasive way. Yet currently, NIPT is mostly related to the cell


Scanner

free DNA-based testing of genetic diseases, especially

#### chromosomal aneuploidies.



# Cell-free fetal DNA and NIPT



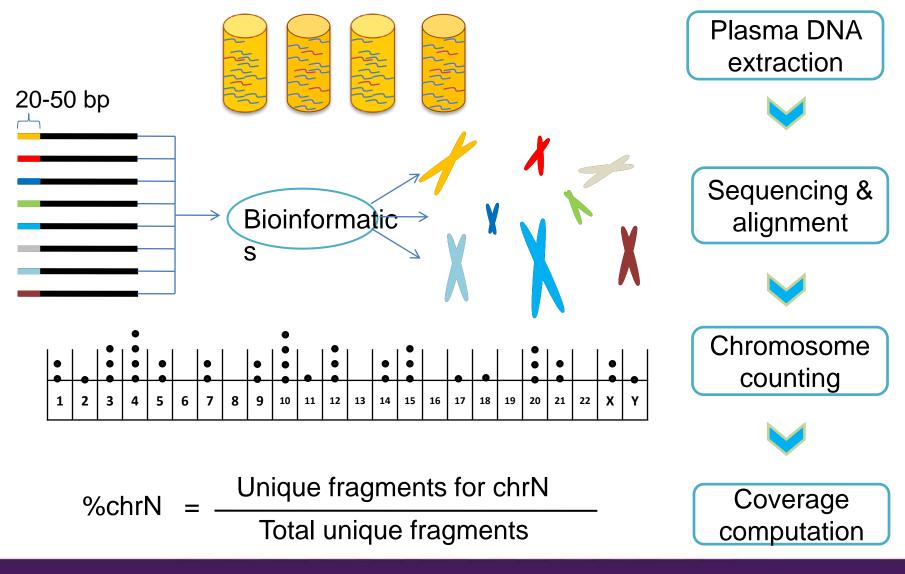
- Short DNA fragments ~145-200bp, circulating in maternal peripheral blood and originating from placental trophoblasts.
- Can be observed since the 5<sup>th</sup> gestation week (GA)
- Content is proportional to GA and inversely proportional to maternal BMI

• Averagely 10%, diverse among individuals Lo YM et al., Lancet, 1997; 350: 485-87; Alberry M. et al., <u>Prenat Diagn.</u> 2007 May;27(5):415-8.; Zhou Y





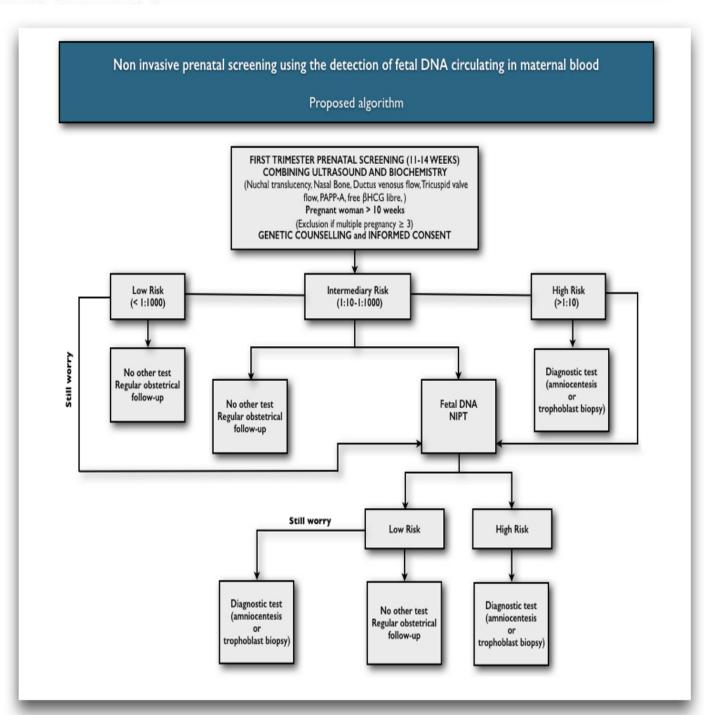
# Sequencing strategies for NIPT


- Whole genome sequencing
- Non-polymorphism unique region in the human genome(>95%)
- Detect aneuploidies in 24 chromosomes and smaller deletion/duplication parallel
- Discriminate standard T21, partial T21 and mosaic T21
- Fetal fraction estimated by chromosomal Y specific or chromosomal specific sequence

- Target region sequencing
- Polymorphism region in the human genome(2000-10,000 SNPs)
- Can detect aneuploidies at selected chromosomes and regions (21,18,13,X,Y)
- Fetal fraction estimated by chromosomal Y specific or father-inherited SNP ratio information

hromosomal abnormities in miscarriages




## **Principals of Sequencing-Based NIPT**





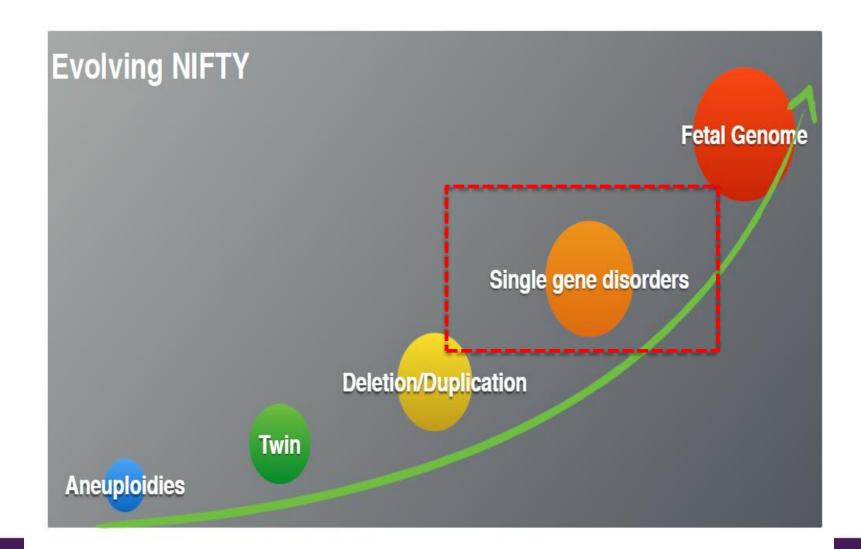
### **Professional Guideline**

| Protes                                                                               | sional (                                                                        | Juidelin                                                                                                                            |                                                        | 2015.                                                                                                                                                                                                                                       | 2015.<br>9                                           | 2016.<br>7             |  |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------|--|
| 01 <sup>2</sup>                                                                      | 2013.<br>012. 2<br>11 ACM<br>6GC G                                              | 2013.<br>3<br>JSO                                                                                                                   | 2014.<br>7<br>ISUO<br>G                                | 3<br>ESHG<br>and<br>ASHG                                                                                                                                                                                                                    | ACO<br>G<br>updat<br>e                               | ACM<br>G<br>updat<br>e |  |
|                                                                                      |                                                                                 |                                                                                                                                     |                                                        |                                                                                                                                                                                                                                             |                                                      |                        |  |
| 2012.<br>11<br>Chine<br>se<br>Prena<br>tal<br>Diagn                                  | 12                                                                              | 2013. 2013.<br>2 5<br>SOG Italian<br>C colleg<br>e of<br>Fetal<br>Mater                                                             | 2014.<br>8<br>Israeli<br>Societ<br>y of<br>Medic<br>al | 2015.<br>4<br>ISPD<br>updat<br>e                                                                                                                                                                                                            | 2015.1<br>0<br>Austria<br>n-<br>Germa<br>n-<br>Swiss |                        |  |
| ACOG<br>(American College<br>of Obstetricians<br>and Gynecologists)                  | ISPD<br>(International<br>Society for Prenatal<br>Diagnosis )                   | ESHG-ASH<br>(European Societ)<br>Genetics<br>American Society<br>Genetics                                                           | y of Human<br>s-<br>y of Human                         | (American C                                                                                                                                                                                                                                 | ACMG<br>ollege of Medica<br>Genomics)                | I Genetics and         |  |
| 2015.6 26 online<br>published                                                        | 2015.6 4 online<br>published                                                    | 2015.3.18 online put                                                                                                                | olished 2                                              | 016.7 online publish                                                                                                                                                                                                                        | ned                                                  |                        |  |
| Recommended:                                                                         | Recommended:                                                                    | Recommended:                                                                                                                        | ٩                                                      | Recommended:                                                                                                                                                                                                                                |                                                      |                        |  |
| <ul> <li>Not applied in<br/>micro-<br/>deletion/duplicatio<br/>n syndrome</li> </ul> | <ul> <li>Only include<br/>disease with<br/>clinical<br/>significance</li> </ul> | <ul> <li>Not to expand NIPT to other<br/>syndrome: not deny the<br/>potential value</li> <li>Target region based methods</li> </ul> |                                                        | <ul> <li>NIPS is the most sensitive screening option for<br/>traditionally screened aneuploidies</li> <li>Restrict only in disease with severe clinical significance</li> <li>Not to expand NIPS to other chromosome aneuploidy,</li> </ul> |                                                      |                        |  |
| Need more                                                                            | Equip with trained                                                              |                                                                                                                                     |                                                        | <ul> <li>Not to expand NIPS to other chromosome aneuploidy,<br/>need more validation</li> </ul>                                                                                                                                             |                                                      |                        |  |



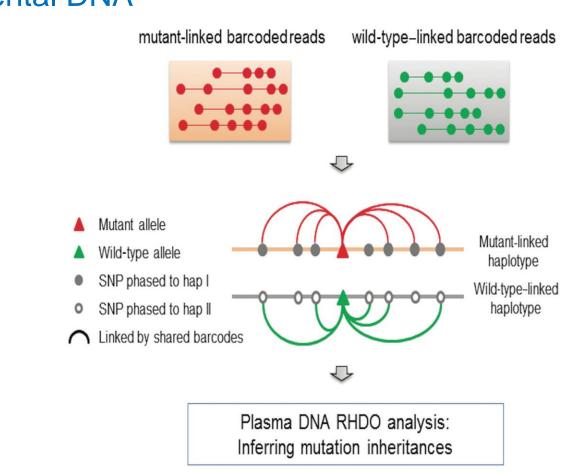


# Challenges in current NIPT service


- **Simpler processing** (Automation-software-figure)
- Easier explanation (Z score/risk assessment-figure)
- Faster turnaround time (1-3-5-7-10 days)
- Cheaper (1000-500-300-100 USD)
- Flexible throughput (3456-768-196-16-1 samples per run)
- **Regulation** (CE/FDA/CAP/CLIA)
- **Easy training** (nurses/doctors/bioinformatics guys)
- **Social education** (Pregnant women/Family member)

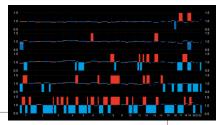


| Author              | Accuracy                                                                                                                                                                                                                                                                                           |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chen et al.2013     | 1311 clinical cases : Correctly identifies 3 cases of micro-deletion/duplication with 100% sensitivity. One false positive was found resulting in 99.92% specificity. No false negative results (>10M deletion/duplication)                                                                        |
| Li et al.2016       | 117 clinical cases : 18 CNV (>1M) were identified through microarray, 10 of 11 cases with CNV<br>>5M were identified with NIPT; Among 7 cases with CNV >1M but <5M, NIPT identified 1 case<br>(2.82M). Therefore, NIPT sensitivity for detecting CNV >1M was 61.1% with 5% false negative<br>rate. |
| Zhao et al.2015     | For 3-40M micro-deletion/duplication, 17 case were identified in 18 cases. Sensitivity and specificity were 94.4% and 99.4%, respectively.                                                                                                                                                         |
| Helgeson et al.2015 | In 175393 clinical cases, 55 sub-chromosomal abnormality were identified with false positive rate of 0.0017%. The most common abnormality was 22q11.2, with 70.5% detection rate                                                                                                                   |
| Pescia et al.2016   | 6388 clinical cases, identifies 3 T22, 6 T7 with false positive rate of 0.71%. In other sub-<br>chromosomal abnormality(CNV) aspect, 8 CNV were identified, including 3 false positive and 1<br>false negative.                                                                                    |








### Haplotype-assisted method for NIPD Direct haplotyping from parental DNA





## **NIPT and Maternal cancer**



Amant F, et al. JAMA Oncol. 2015 Sep;1(6):814-9.

#### **Brief Report**

### Presymptomatic Identification of Cancers in Pregnant Women During Noninvasive Prenatal Testing

Frédéric Amant, MD, PhD; Magali Verheecke, MD; Iwona Wlo Nathalie Brison, PhD; Kris Van Den Bogaert, PhD; Daan Dieric Thomas Tousseyn, MD, PhD; Philippe Moerman, MD, PhD; Ac Patrick Neven, MD, PhD; Patrick Berteloot, MD; Katrien Putse Peter Vandenberghe, MD, PhD; Eric Legius, MD, PhD; Joris Ro

- 4000 case for NIPT, 3 cases showed multiple abnorlities
- MRI image, tissue slice and genetic testing confirmation ;
- tumor tissue CNV concordant with NIPT

Bianchi, DW, et al. JAMA. 2015 Jul 14; JAMA. 2015 J

#### **Preliminary Communication**

### Noninvasive Prenatal Testing and Incidental Detection of Occult Maternal Malignancies

Diana W. Bianchi, MD; Darya Chudova, PhD; Amy J. Sehnert, Tracy L. Prosen, MD; Judy E. Garber, MD; Louise Wilkins-Hau Stephen Warsof, MD; James Goldberg, MD; Tina Ziainia, MD;

- 125,426 case for NIPT, 10 cases with confirmed cancer
- NIPT give discordant results with karvotyping



C American College of Medical Genetics and Genomics

#### Genetics inMedicine





Article | Published: 12 April 2019

### Identifying occult maternal malignancies from 1.93 million pregnant women undergoing noninvasive prenatal screening tests

Xing Ji, MD<sup>1,2</sup>, Jia Li, PhD<sup>3</sup>, Yonghua Huang, MD<sup>4</sup>, Pi-Lin Sung, MD<sup>5,6</sup>, Yuying Yuan, BS<sup>3</sup>, Qiang Liu, BS<sup>3</sup>, Yan Chen, PhD<sup>3</sup>, Jia Ju, MS<sup>3</sup>, Yafeng Zhou, PhD<sup>3</sup>, Shujia Huang, PhD<sup>3</sup>, Fang Chen, PhD<sup>3</sup>, Yuan Han, BS<sup>7</sup>, Wen Yuan, MS<sup>7</sup>, Cheng Fan, BS<sup>3</sup>, Qiang Zhao, PhD<sup>4</sup>, Haitao Wu, PhD<sup>8</sup>, Suihua Feng, MS<sup>4</sup>, Weiqiang Liu, MD<sup>9</sup>, Zhihua Li, MD<sup>10</sup>, Jingsi Chen, MD<sup>10</sup>, Min Chen, MD<sup>10</sup>, Hong Yao, MD<sup>11</sup>, Li Zeng, MD<sup>12</sup>, Tao Ma, MD<sup>13</sup>, Shushu Fan, MD<sup>14</sup>, Jinman Zhang, MD<sup>15,16</sup>, Ka Yiu Yuen, BS<sup>17</sup>, So Hin Cheng, BS<sup>17</sup>, Irene Wing Shan Chik, BS<sup>17</sup>, Nien-Tzu Liu, MS<sup>17</sup>, Jianyu Zhu, BS<sup>3</sup>, Siyuan Lin, BS<sup>17</sup>, Jeremy Cao, BS<sup>17</sup>, Steve Tong, BS<sup>17</sup>, Zhiyuan Shan, BS<sup>18</sup>, Wenyan Li, MS<sup>3</sup>, Mohammad Reza Hekmat, MS<sup>19</sup>, Masoud Garshasbi, PhD<sup>19,20</sup>, Javier Suela, PhD<sup>21</sup>, Yaima Torres, MSc<sup>21</sup>, Juan C. Cigudosa, PhD<sup>21</sup>, F. J. Pérez Ruiz, MD<sup>22</sup>, Laura Rodríguez, PhD<sup>23</sup>, Mónica García, PhD<sup>23</sup>, Janez Bernik, MS<sup>24</sup>, Eva Traven, MS<sup>24</sup>, Uršula Reš, MD<sup>25</sup>, Nataša Tul, MD<sup>26</sup>, Ching-Fong Tseng, MS<sup>27</sup>, Depeng Zhao, MD<sup>28</sup>, Luming Sun, MD<sup>28</sup>, Qiong Pan, MS<sup>29</sup>, Li Shen, MD<sup>30</sup>, Mengyao Dai, MD<sup>1,2</sup>, Yuying Wang, PhD<sup>3</sup>, Jian Wang, MS<sup>3,31</sup>, Huanming Yang, PhD<sup>3,31</sup>, Ye Yin, PhD<sup>3,34,35</sup>, Yingwei Chen, MD<sup>1</sup> and Mao Mao, MD, PhD<sup>5</sup>



## Thank you for your attention

Dr. Masoud Garshasbi masoud.garshasbi@gmail.com